2x^2+7/3=13

Simple and best practice solution for 2x^2+7/3=13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+7/3=13 equation:



2x^2+7/3=13
We move all terms to the left:
2x^2+7/3-(13)=0
determiningTheFunctionDomain 2x^2-13+7/3=0
We multiply all the terms by the denominator
2x^2*3+7-13*3=0
We add all the numbers together, and all the variables
2x^2*3-32=0
Wy multiply elements
6x^2-32=0
a = 6; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·6·(-32)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*6}=\frac{0-16\sqrt{3}}{12} =-\frac{16\sqrt{3}}{12} =-\frac{4\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*6}=\frac{0+16\sqrt{3}}{12} =\frac{16\sqrt{3}}{12} =\frac{4\sqrt{3}}{3} $

See similar equations:

| 81=27^-x-5 | | 2*(3b+7)=5*(-2b+1) | | -6v+3(v-3)=9 | | 7(2a-1)=8a+5 | | 4z+-11=5 | | 2c+43=59 | | 4c+14=3c-2 | | -4=-2e | | 5+7x+27=(11x+2) | | 45=25+x | | 8a-2=3*(4a-5) | | 7*(2x-1)=8x+5 | | 84/4x=3 | | 4v-36=v | | 4x-2x=3+6x+4 | | 8x-30=190 | | 4z-91=2z-29 | | 2z-69=z | | 5u-27=u+21 | | 2x-3/3x-5=1/2 | | -6(7v-5)-3=3(v-6 | | 2a-62=a-31 | | 4x^2-9=2x^2 | | 5s+145=5 | | 4x^2-9=2x^2-9 | | 5.7.5=2/x | | 3(2)^x-1=5^2x | | 1.3v+6(0.2v-4)=-31 | | 3m^2-16m=0 | | 5^3p=1/625 | | 11x+5+27x+5=180 | | 3a^2+6a=-4 |

Equations solver categories